Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Cell Rep ; 43(3): 113867, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38416640

Individuals with Williams syndrome (WS), a neurodevelopmental disorder caused by hemizygous loss of 26-28 genes at 7q11.23, characteristically portray a hypersocial phenotype. Copy-number variations and mutations in one of these genes, GTF2I, are associated with altered sociality and are proposed to underlie hypersociality in WS. However, the contribution of GTF2I to human neurodevelopment remains poorly understood. Here, human cellular models of neurodevelopment, including neural progenitors, neurons, and three-dimensional cortical organoids, are differentiated from CRISPR-Cas9-edited GTF2I-knockout (GTF2I-KO) pluripotent stem cells to investigate the role of GTF2I in human neurodevelopment. GTF2I-KO progenitors exhibit increased proliferation and cell-cycle alterations. Cortical organoids and neurons demonstrate increased cell death and synaptic dysregulation, including synaptic structural dysfunction and decreased electrophysiological activity on a multielectrode array. Our findings suggest that changes in synaptic circuit integrity may be a prominent mediator of the link between alterations in GTF2I and variation in the phenotypic expression of human sociality.


Transcription Factors, TFIII , Transcription Factors, TFII , Williams Syndrome , Humans , Williams Syndrome/genetics , Williams Syndrome/metabolism , Neurons/metabolism , Social Behavior , Phenotype , Transcription Factors, TFIII/metabolism , Transcription Factors, TFII/genetics , Transcription Factors, TFII/metabolism
2.
Disaster Med Public Health Prep ; 17: e303, 2023 02 14.
Article En | MEDLINE | ID: mdl-36785529

The United Nations (UN) established an umbrella of organizations to manage distinct clusters of humanitarian aid. The World Health Organization (WHO) oversees the health cluster, giving it responsibility for global, national, and local medical responses to natural disasters. However, this centralized structure insufficiently engages local players, impeding robust local implementation. The Gorkha earthquake struck Nepal on April 25, 2015, becoming Nepal's most severe natural disaster since the 1934 Nepal-Bihar earthquake. In coordinated response, 2 organizations, Empower Nepali Girls and International Neurosurgical Children's Association, used a hybrid approach integrating continuous communication with local recipients. Each organization mobilized its principal resource strengths-material medical supplies or human capital-thereby efficiently deploying resources to maximize the impact of the medical response. In addition to efficient resource use, this approach facilitates dynamic medical responses from highly mobile organizations. Importantly, in addition to future earthquakes in Nepal, this medical response strategy is easily scalable to other natural disaster contexts and other medical relief organizations. Preemptively identifying partner organizations with complementary strengths, continuous engagement with recipient populations, and creating disaster- and region-specific response teams may represent viable variations of the WHO cluster model with greater efficacy in local implementation of treatment in acute disaster scenarios.


Disaster Planning , Disasters , Earthquakes , Natural Disasters , Child , Female , Humans , Nepal , World Health Organization
3.
Mol Psychiatry ; 28(4): 1571-1584, 2023 04.
Article En | MEDLINE | ID: mdl-36385168

Prenatal alcohol exposure is the foremost preventable etiology of intellectual disability and leads to a collection of diagnoses known as Fetal Alcohol Spectrum Disorders (FASD). Alcohol (EtOH) impacts diverse neural cell types and activity, but the precise functional pathophysiological effects on the human fetal cerebral cortex are unclear. Here, we used human cortical organoids to study the effects of EtOH on neurogenesis and validated our findings in primary human fetal neurons. EtOH exposure produced temporally dependent cellular effects on proliferation, cell cycle, and apoptosis. In addition, we identified EtOH-induced alterations in post-translational histone modifications and chromatin accessibility, leading to impairment of cAMP and calcium signaling, glutamatergic synaptic development, and astrocytic function. Proteomic spatial profiling of cortical organoids showed region-specific, EtOH-induced alterations linked to changes in cytoskeleton, gliogenesis, and impaired synaptogenesis. Finally, multi-electrode array electrophysiology recordings confirmed the deleterious impact of EtOH on neural network formation and activity in cortical organoids, which was validated in primary human fetal tissues. Our findings demonstrate progress in defining the human molecular and cellular phenotypic signatures of prenatal alcohol exposure on functional neurodevelopment, increasing our knowledge for potential therapeutic interventions targeting FASD symptoms.


Cerebral Cortex , Ethanol , Neural Pathways , Neurogenesis , Neurons , Organoids , Female , Humans , Male , Pregnancy , Astrocytes/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cerebral Cortex/cytology , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/genetics , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , Ethanol/pharmacology , Fetal Alcohol Spectrum Disorders/etiology , Fetal Alcohol Spectrum Disorders/genetics , Fetus/cytology , Gene Expression Profiling , Nerve Net/drug effects , Neurodevelopmental Disorders/chemically induced , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Neurogenesis/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/pathology , Organoids/cytology , Organoids/drug effects , Organoids/pathology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/genetics , Proteomics , Synapses/drug effects , Neural Pathways/drug effects
4.
Nat Commun ; 13(1): 7945, 2022 12 26.
Article En | MEDLINE | ID: mdl-36572698

Human cortical organoids, three-dimensional neuronal cultures, are emerging as powerful tools to study brain development and dysfunction. However, whether organoids can functionally connect to a sensory network in vivo has yet to be demonstrated. Here, we combine transparent microelectrode arrays and two-photon imaging for longitudinal, multimodal monitoring of human cortical organoids transplanted into the retrosplenial cortex of adult mice. Two-photon imaging shows vascularization of the transplanted organoid. Visual stimuli evoke electrophysiological responses in the organoid, matching the responses from the surrounding cortex. Increases in multi-unit activity (MUA) and gamma power and phase locking of stimulus-evoked MUA with slow oscillations indicate functional integration between the organoid and the host brain. Immunostaining confirms the presence of human-mouse synapses. Implantation of transparent microelectrodes with organoids serves as a versatile in vivo platform for comprehensive evaluation of the development, maturation, and functional integration of human neuronal networks within the mouse brain.


Neurons , Visual Cortex , Humans , Animals , Mice , Neurons/physiology , Brain , Prostheses and Implants , Organoids/transplantation , Visual Cortex/physiology
5.
PLoS Biol ; 20(11): e3001845, 2022 11.
Article En | MEDLINE | ID: mdl-36327326

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which was rapidly declared a pandemic by the World Health Organization (WHO). Early clinical symptomatology focused mainly on respiratory illnesses. However, a variety of neurological manifestations in both adults and newborns are now well-documented. To experimentally determine whether SARS-CoV-2 could replicate in and affect human brain cells, we infected iPSC-derived human brain organoids. Here, we show that SARS-CoV-2 can productively replicate and promote death of neural cells, including cortical neurons. This phenotype was accompanied by loss of excitatory synapses in neurons. Notably, we found that the U.S. Food and Drug Administration (FDA)-approved antiviral Sofosbuvir was able to inhibit SARS-CoV-2 replication and rescued these neuronal alterations in infected brain organoids. Given the urgent need for readily available antivirals, these results provide a cellular basis supporting repurposed antivirals as a strategic treatment to alleviate neurocytological defects that may underlie COVID-19- related neurological symptoms.


COVID-19 Drug Treatment , SARS-CoV-2 , Infant, Newborn , Humans , Sofosbuvir/pharmacology , Sofosbuvir/therapeutic use , Organoids , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Brain , Cell Death , Synapses
8.
J Craniofac Surg ; 33(5): 1545-1548, 2022.
Article En | MEDLINE | ID: mdl-35275860

BACKGROUND: In this study, the authors present the outcomes of 4 patients with a severe form of Crouzon syndrome characterized by mutation of fibroblast growth factor receptor 2 (FGFR2) c.1040 C > G p.Ser347Cys or the pathogenic c.1061C > G p.Ser354Cys variant of FGFR2, who underwent posterior vault distraction osteogenesis (PVDO) to alleviate elevated intracranial pressure. METHODS: Patients with diagnosed Crouzon syndrome who were found by genetic testing to have an FGFR2 c.1040 C > G p.Ser347Cys mutation or the c.1061C > G p.Ser354Cys variant were included. Outcome data and presence of hydrocephalus, Chiari Malformation type I (CMIs), and the presence/absence of a tracheostomy were recorded. RESULTS: Three patients with the FGFR2 c.1040 C > G p.Ser347Cys mutation and 1 with the pathogenic FGFR2 c.1061C > G p.Ser354Cys variant were identified as having characteristics of severe Crouzon syndrome. The mean age at PVDO was 15 months and the mean posterior advancement was 20 mm. All 4 patients experienced sufficient relief of the elevated intracranial pressure from the PVDO to prevent the need for shunt placement, stabilize the ventricular dimensions (n = 2), and resolve the CMIs (n = 2). Intracranial pressure screening ruled out malignant cerebrospinal fluid volume increase. CONCLUSIONS: PVDO effectively prevented hydrocephalus and resolved CMIs, successfully alleviating intracranial pressure and maximizing clinical outcomes for patients with severe Crouzon syndrome.


Craniofacial Dysostosis , Craniosynostoses , Hydrocephalus , Intracranial Hypertension , Osteogenesis, Distraction , Craniofacial Dysostosis/genetics , Craniofacial Dysostosis/pathology , Craniofacial Dysostosis/surgery , Craniosynostoses/diagnosis , Humans , Hydrocephalus/genetics , Hydrocephalus/surgery , Mutation , Osteogenesis, Distraction/methods , Receptor, Fibroblast Growth Factor, Type 2/genetics
11.
Brain ; 145(6): 1962-1977, 2022 06 30.
Article En | MEDLINE | ID: mdl-34957478

Focal cortical dysplasia is a highly epileptogenic cortical malformation with few treatment options. Here, we generated human cortical organoids from patients with focal cortical dysplasia type II. Using this human model, we mimicked some focal cortical dysplasia hallmarks, such as impaired cell proliferation, the presence of dysmorphic neurons and balloon cells, and neuronal network hyperexcitability. Furthermore, we observed alterations in the adherens junctions zonula occludens-1 and partitioning defective 3, reduced polarization of the actin cytoskeleton, and fewer synaptic puncta. Focal cortical dysplasia cortical organoids showed downregulation of the small GTPase RHOA, a finding that was confirmed in brain tissue resected from these patients. Functionally, both spontaneous and optogenetically-evoked electrical activity revealed hyperexcitability and enhanced network connectivity in focal cortical dysplasia organoids. Taken together, our findings suggest a ventricular zone instability in tissue cohesion of neuroepithelial cells, leading to a maturational arrest of progenitors or newborn neurons, which may predispose to cellular and functional immaturity and compromise the formation of neural networks in focal cortical dysplasia.


Epilepsy , Malformations of Cortical Development, Group I , Malformations of Cortical Development , Brain , Humans , Infant, Newborn , Neurons
15.
EMBO Mol Med ; 13(1): e12523, 2021 01 11.
Article En | MEDLINE | ID: mdl-33501759

Duplication or deficiency of the X-linked MECP2 gene reliably produces profound neurodevelopmental impairment. MECP2 mutations are almost universally responsible for Rett syndrome (RTT), and particular mutations and cellular mosaicism of MECP2 may underlie the spectrum of RTT symptomatic severity. No clinically approved treatments for RTT are currently available, but human pluripotent stem cell technology offers a platform to identify neuropathology and test candidate therapeutics. Using a strategic series of increasingly complex human stem cell-derived technologies, including human neurons, MECP2-mosaic neurospheres to model RTT female brain mosaicism, and cortical organoids, we identified synaptic dysregulation downstream from knockout of MECP2 and screened select pharmacological compounds for their ability to treat this dysfunction. Two lead compounds, Nefiracetam and PHA 543613, specifically reversed MECP2-knockout cytologic neuropathology. The capacity of these compounds to reverse neuropathologic phenotypes and networks in human models supports clinical studies for neurodevelopmental disorders in which MeCP2 deficiency is the predominant etiology.


Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Neurons/drug effects , Organoids , Pyrrolidinones/pharmacology , Quinuclidines/pharmacology , Rett Syndrome , Female , Gene Knockout Techniques , Humans , Methyl-CpG-Binding Protein 2/genetics , Organoids/drug effects , Phenotype , Rett Syndrome/genetics
16.
J Med Case Rep ; 14(1): 218, 2020 Nov 12.
Article En | MEDLINE | ID: mdl-33176863

BACKGROUND: Facial baroparesis is a palsy of the seventh cranial nerve resulting from increased pressure compressing the nerve along its course through the middle ear cavity. It is a rare condition, most commonly reported in barotraumatic environments, in particular scuba diving and high-altitude air travel. We report here an unusual case of highly frequent baroparesis, workup, and successful treatment. CASE PRESENTATION: A 57-year-old Caucasian male frequent commercial airline traveler presented with a 4-year history of recurrent episodes of right-sided facial paralysis and otalgia, increasing in both frequency and severity. Incidents occurred almost exclusively during rapid altitude changes in aircraft, mostly ascent, but also during rapid altitude change in an automobile. Self-treatment included nasal and oral decongestants, nasal corticosteroids, and warm packs. Temporal bone computed tomography (CT) scan revealed possible right-sided dehiscence of the tympanic bone segment; audiogram and magnetic resonance imaging of the internal auditory canals were unremarkable. After a diagnosis of facial nerve baroparesis was made, the patient underwent myringotomy with insertion of a pressure equalization tube (PET) into the right tympanic membrane. Despite re-exposure to altitude change multiple times weekly post-treatment, the patient reported being symptom-free for more than 6 months following intervention. CONCLUSIONS: Prompt PET insertion may represent the preferred treatment for individuals who suffer recurrent episodes of facial baroparesis. Education regarding this rare condition may prevent unnecessary testing and treatment of affected patients. Future studies should explore the pathophysiology and risk factors, compare therapeutic options, and provide follow-up data to optimize the management of affected patients.


Barotrauma , Diving , Facial Paralysis , Altitude , Barotrauma/complications , Facial Nerve , Facial Paralysis/etiology , Facial Paralysis/therapy , Humans , Male , Middle Aged
17.
Acta Neuropathol ; 140(6): 851-862, 2020 12.
Article En | MEDLINE | ID: mdl-32939646

Probable rapid eye movement (REM) sleep behavior disorder (pRBD) is a synucleinopathy-associated parasomnia in which loss of REM sleep muscle atonia results in motor behavior during REM sleep, including dream enactment. Traumatic brain injury is independently associated with increased risk of pRBD and Lewy body disease, and both pRBD and Lewy body disease are often observed in chronic traumatic encephalopathy (CTE). However, the frequency and pathological substrate of pRBD in CTE have not been formally studied and remain unknown. Of the total sample of 247 men, age at death of 63.1 ± 18.8 years (mean ± SD), 80 [32%] were determined by informant report to have symptoms of pRBD. These participants had played more years of contact sports (18.3 ± 11.4) than those without pRBD (15.1 ± 6.5; P = 0.02) and had an increased frequency of Lewy body disease (26/80 [33%] vs 28/167 [17%], P = 0.005). Of the 80 participants with pRBD, 54 [68%] did not have Lewy body disease; these participants were more likely to have neurofibrillary tangles and pretangles in the dorsal and median raphe (41 of 49 [84%] non-LBD participants with pRBD symptoms vs 90 of 136 [66%] non-LBD participants without pRBD symptoms, P = 0.02), brainstem nuclei with sleep regulatory function. Binary logistic regression modeling in the total study sample showed that pRBD in CTE was associated with dorsal and median raphe nuclei neurofibrillary tangles (OR = 3.96, 95% CI [1.43, 10.96], P = 0.008), Lewy body pathology (OR = 2.36, 95% CI [1.18, 4.72], P = 0.02), and years of contact sports participation (OR = 1.04, 95% CI [1.00, 1.08], P = 0.04). Overall, pRBD in CTE is associated with increased years of contact sports participation and may be attributable to Lewy body and brainstem tau pathologies.


Chronic Traumatic Encephalopathy/pathology , Lewy Body Disease/pathology , Neurofibrillary Tangles/pathology , REM Sleep Behavior Disorder/etiology , REM Sleep Behavior Disorder/pathology , Adult , Aged , Aged, 80 and over , Chronic Traumatic Encephalopathy/complications , Humans , Lewy Bodies/pathology , Male , Middle Aged , Parkinson Disease/complications , REM Sleep Behavior Disorder/diagnosis
18.
Physiology (Bethesda) ; 34(5): 365-375, 2019 09 01.
Article En | MEDLINE | ID: mdl-31389776

Brain organoids recapitulate in vitro the specific stages of in vivo human brain development, thus offering an innovative tool by which to model human neurodevelopmental disease. We review here how brain organoids have been used to study neurodevelopmental disease and consider their potential for both technological advancement and therapeutic development.


Brain/physiopathology , Neurodevelopmental Disorders/physiopathology , Organoids/physiopathology , Animals , Humans , Models, Biological
19.
J Neuropathol Exp Neurol ; 77(9): 757-768, 2018 09 01.
Article En | MEDLINE | ID: mdl-30053297

Traumatic brain injury has been associated with increased risk of Parkinson disease and parkinsonism, and parkinsonism and Lewy body disease (LBD) can occur with chronic traumatic encephalopathy (CTE). To test whether contact sports and CTE are associated with LBD, we compared deceased contact sports athletes (n = 269) to cohorts from the community (n = 164) and the Boston University Alzheimer disease (AD) Center (n = 261). Participants with CTE and LBD were more likely to have ß-amyloid deposition, dementia, and parkinsonism than CTE alone (p < 0.05). Traditional and hierarchical clustering showed a similar pattern of LBD distribution in CTE compared to LBD alone that was most frequently neocortical, limbic, or brainstem. In the community-based cohort, years of contact sports play were associated with neocortical LBD (OR = 1.30 per year, p = 0.012), and in a pooled analysis a threshold of >8 years of play best predicted neocortical LBD (ROC analysis, OR = 6.24, 95% CI = 1.5-25, p = 0.011), adjusting for age, sex, and APOE ɛ4 allele status. Clinically, dementia was significantly associated with neocortical LBD, CTE stage, and AD; parkinsonism was associated with LBD pathology but not CTE stage. Contact sports participation may increase risk of developing neocortical LBD, and increased LBD frequency may partially explain extrapyramidal motor symptoms sometimes observed in CTE.


Brain/pathology , Chronic Traumatic Encephalopathy/pathology , Chronic Traumatic Encephalopathy/physiopathology , Lewy Body Disease/pathology , Lewy Body Disease/physiopathology , Adolescent , Adult , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Apolipoproteins E/genetics , Brain/metabolism , Cohort Studies , Female , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Sports , Trauma Severity Indices , Young Adult , alpha-Synuclein/metabolism , tau Proteins/metabolism
20.
Pest Manag Sci ; 2018 Mar 13.
Article En | MEDLINE | ID: mdl-29536620

BACKGROUND: Pesticide applications using a specific droplet size and carrier volume could maximize herbicide efficacy while mitigating particle drift in a precise and efficient manner. The objectives of this study were to investigate the influence of spray droplet size and carrier volume on dicamba and glufosinate efficacy, and to determine the plausibility of droplet-size based site-specific weed management strategies. RESULTS: Generally, across herbicides and carrier volumes, as droplet size increased, weed control decreased. Increased carrier volume (187 L ha-1 ) buffered this droplet size effect, thus greater droplet sizes could be used to mitigate drift potential while maintaining sufficient levels of weed control. To mitigate drift potential and achieve satisfactory weed control (≥ 90% of maximum observed control), a 900 µm (Ultra Coarse) droplet size paired with 187 L ha-1 carrier volume is recommended for dicamba applications and a 605 µm (Extremely Coarse) droplet size across carrier volumes is recommended for glufosinate applications. Although general droplet size recommendations were created, optimum droplet sizes for weed control varied significantly across site-years. CONCLUSION: Convoluted interactions occur between droplet size, carrier volume, and other application parameters. Recommendations for optimizing herbicide applications based on droplet size should be based on a site-specific management approach to better account for these interactions. © 2018 Society of Chemical Industry.

...